Brief information about the project

Name of the project	AP19678726 "Development of conditions for obtaining
	hemostatic composites for medical and biological purposes
	based on Kazakhstan kaolin"
Relevance	The research project is aimed at the development of
	hemostatic agents based on domestic raw materials - kaolin
	and auxiliary bioactive agents, which are designed to
	provide first aid by accelerated stimulation of blood
	coagulation. Kazakhstan kaolin has good hemostatic
	properties and can act as a coagulator, the structure of
	which can be further strengthened by other active styptic
	agents, and more effectively stimulate the process of blood
	coagulation due to the negative charge on its surface.
Purpose	The goal of the project is to develop conditions for
_	obtaining domestic (local) hemostatic agents (DHA) based
	on Kazakhstan kaolin Alexeev's field, Kokshetau region.
	Kazakhstan kaolin can be used as the main potent
	hemostatic agent and act as a porous framework for other
	hemostatic components and at the same time to strengthen
	the process of blood clotting.
Objectives	A way to achieve the project goal through the following
	logically interrelated sequential tasks:
	1. Conduct a scientifically based selection of
	biocompatible, environmentally friendly "mucoadhesive
	agents" for the modification of Kazakhstan kaolin
	2. To establish optimal conditions to produce modified
	kaolin with a good specific surface area and active sites
	susceptible to the introduction of polyvinyl alcohol (PVA)
	as an additional modifier to increase the porosity of the
	frame of the proposed composite material.
	3. To enhance the hemostatic properties of kaolin,
	chitosan, introduced into the structure of natural and
	modified kaolin by impregnation, will be used as an
	organic nemostat. Hemostatic membranes of a triple
	composite material based on kaolin/PVA/chitosan will be
	obtained at different ratios of chilosan to the main
	4. To develop conditions for application to the structure
	4. To develop conditions for application to the structure of homostatic compositor has a n kaolin/PVA/Chitoson
	of known biodegradable agents to impart moisture
	retaining and dust-suppressing properties
	5 To investigate the hemolytic activity of selected
	promising hemostatic composites obtained to assess the
	hemocompatibility of materials and prenare
	recommendations for practical use.
Expected and achieved results	Expected results:
	1. Optimal conditions for obtaining modified kaolin with
	good specific surface area and active centers, susceptible
	to the adsorption of hemostatic agents to enhance the
	hemostatic properties of kaolin, will be established.

	2. Conditions will be developed to produce a hemostatic
	composite material based on selected natural or modified
	kaolin with a certain specific surface area, containing
	polyvinyl alcohol (PVA) as an additional modifier to
	increase the porosity of the framework of the proposed
	composite material.
	Achieved Results:
	1. The modification of natural kaolin (KAO) was carried
	out in two stages. At the first stage, acid treatment of kaolin
	was carried out with 10% H ₃ PO ₄ at 100 °C for 5 hours, in
	the ratio $S:L = 1:10$. Next, the sediment was washed to
	neutral pH=7. The precipitate was separated, dried and
	calcined for 2 hours at 500 °C.
	2. The elemental composition of natural and modified
	kaolin was established, which indicates an increase in the
	silicon oxide content in the modified kaolin from 38.59 to
	41.38%. The content of calcium, magnesium, iron, nickel
	and aluminum in the calcined samples decreased.
	3. The specific surface area was studied by the Brunauer-
	Emmett-Teller (BET) method. Natural kaolin has a low
	specific surface area of 13.453 m^2/g , after acid treatment
	the specific surface area increases to $33.166 \text{ m}^2/\text{g}$, which
	leads to an increase in specific pore volume from 0.006 to
	0.014 with a constant average pore size.
	4. Alkaline modification of kaolin was carried out by
	heating for 8 hours in 2M sodium hydroxide solution, and
	the specific surface area also increased 2.5 times.
	The results of acid and alkaline modification of kaolin
	were confirmed by SEM images and IR spectra.
	5. Preliminary conditions for production of hemostatic
	composite material PVA/kaolin at mass ratios of
	KAO:PVA were optimized
	lg KAO + 0.1% PVA; lg KAO + 0.5% PVA; lg KAO +
	1.0% PVA. The average specific surface area of kaolin was
	13.453m ² /g.
	6. IR spectra were investigated for all the samples. The
	sharp characteristic peak at 1118 cm ⁻¹ is the dominant
	manifestation of the PVA structure in the composite, the
	peak at 1085 cm ⁻¹ correlates with C-O-C.
	/. Analysis of SEM figures confirms that PVA alters the
	surface pattern of natural KAO and leads to an increase in
	DVA dealing comparison of the obtained
	P V A/kaolin composite membranes.
	o. The specific surfaces of pure reagents and obtained
	composites were investigated. Their analysis showed that the presence of DVA in VAO loads to a decrease in the
	une presence of r v A III KAO leads to a decrease In the
	specific surface of the obtained samples. It follows from
	uns that rvA was introduced and adsorbed on active
Descent team members with	1 Ospanova Aliva Vananovna. Scientific supervisor
their identifiers (Scopus Author	of the project Ch Sc D professor of Al Earabi KazNUL
ID Researcher ID ORCID if	professor of the Department of Physical Chemistry
,, _,	re of the 2-opartment of righted chemistry,

available) and links to relevant	Catalysis and Petrochemistry h-index-5,
profiles	https://orcid.org/0000-0001-9954-8575, Scopus
	ID=55340038000; ResearcherID: ABE-7029-2021.
	2. Myroslav Sprynskyv, Performer, Leading
	Researcher, PhD.DSc, Professor, Nicolaus Copernicus
	University of Torun, Poland, h-index-22.
	https://orcid.org/0000-0002-4334-3594. ResearcherID:
	GCO-0369–2022: Scopus ID: 18438744500.
	3. Savdenbekova Balzhan Esimkhankyzy, PhD, Al-
	Farabi KazNU, lecturer, h-index-2, https://orcid.org/0000-
	0001-8812-5809, ScopusID=57190410653.
	4. Jumagaziyeva Ardak Bisenbaevna, PhD, SR, JSC
	"Scientific Center of anti-infective drugs". Acting Head of
	Microbiology Laboratory. h-index-3.
	https://orcid.org/0000-0002-8610-7321
	ScopusID=57210255995.
	5. Bekissanova Zhanar Bolatovna, Master of
	Technology degree, RA, Al-Farabi KazNU, lecturer of the
	Department of Physical Chemistry, Catalysis and
	Petrochemistry h-index-3, https://orcid.org/0000-0001-
	6142-0963, ScopusID= 57218598280.
	6. Rakhmatullaeva Dilafruz Talgatkyzy, Master of
	Al-Farabi KazNU, junior researcher, 1st year doctoral
	student at the Department of Physical Chemistry, Catalysis
	and Petrochemistry https://orcid.org/0000-0002-8096-
	1068.
	7. Alimbek Aruzhan Yerlankyzy, 1st year Master of
	the Department of Physical Chemistry, Catalysis and
	Petrochemistry of Al-Farabi KazNU, specialist,
	https://orcid.org/0000-0003-4393-6813.
	8. Otegenova Bayansulu Onlassynbekkyzy, 1st year
	Master of the Department of Physical Chemistry, Catalysis
	and Petrochemistry of Al-Farabi KazNU, specialist,
	https://orcid.org/0000-0003-0319-1116.
List of publications with links to	
them	
Patents	

Production of hemostatic composites

Production of hemostatic composites

Preparation of hemostatic composites by thawing freezing

Preparation of hemostatic composites by thawing freezing

Scheme of production of hemostatic composites and application